

DIGITbrain- Public evaluation report of the second Open Call

By WP8 - Communication and Outreach

Partner:	CSME
Authors:	Andrea Hanninger (CSME)
Version:	V.1
Date:	06.10.2022
Due Date:	After the evaluation of the Open
	Call is completed.
Dissemination Level:	PU

Project funded by the Horizon 2020 Framework Programme of the European Union, Grant agreement Nº: 952071

Document history and quality check

Document History

Version	Date (DD/MM/YYYY)	Created/Amended by	Changes
01	13/10/2021	CSME	First draft of the deliverable
02	25/10/2021	CSME	Final revised version after quality check

Table 1: Document history

Quality check review

Reviewer (s)	Main changes
José Luis Gallego	Template format check, providing suggestions about some contents of the document

Table 2: Quality check review

Table of Contents	
Document history and quality check	2
List of Tables	4
Executive summary	4
Statement for open documents & Copyrights	4
Evaluation Report	5
Call information	5
Response to the call in detail	6
List of beneficiaries	7
List of selected proposals	7

List of Tables

Table 1: Document history	. 2
Table 2: Quality check review	
Table 3: Number of proposals and funding requested	
Table 4: Funding awarded per beneficiary	
Table 5: list of selected proposals	

Executive summary

Shortly after the evaluation of submitted proposals in the Open Call a public summary report of the evaluation results should be published on the DIGITbrain project's website within 30 days of the end of evaluation after the feedback process given to the participants.

This report shall comprise an account of the call, its evaluation and its results, including dates of the call, how it was published, dates of evaluation, number of proposals received, number of proposals funded, as well as a list of all selected proposers and their funding amounts.

Statement for open documents & Copyrights

This document is property of the DIGITbrain Consortium. The content of all or parts of these documents can be used and distributed provided that the DIGITbrain project and the document are properly referenced.

The DIGITbrain consortium is keen on ensuring that all information in this document is correct and fairly stated but does not accept liability for any errors or omissions.

At the best of our knowledge, all third-party literary (articles/studies/reports/etc. or excerpts thereof) or artistic (photos/graphs/drawings/etc.) used to support this document are correctly cited and acknowledged. If the reader should find something not compliant, an additional courtesy acknowledgement or correction can be made to this version thereof.

Evaluation Report

Results of open call (call ID ref DIGITbrain – OC2) for recipients of financial support.

Project acronym: DIGITbrain

Project grant agreement number: 952071

Project full name: Digital twins bringing agility and innovation to manufacturing SMEs, by empowering a network of DIHs with an integrated digital platform that enables manufacturing as a Service (MaaS)

Project DIGITbrain, co-funded from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952071, launched an open call (call ID ref DIGITbrain – OC2) for recipients of financial support.

The call was opened on 28th February 10:00h (CEST Time) and closed on 31st June 2021, 17:00h (CEST Time).

<u>Total EC funding available for third parties in DIGITbrain-OC2</u>: up to 652.655 EUR financial support for Third Parties.

Maximum amount of financial support for each Third Party: 60,000 EUR

A total of 37 proposals from 18 different countries were received for this call. In 34 out of the 37 proposals there was a total of 38 women involved in the execution team of the experiment proposals. From the 85 companies involved in the 7 experiment proposals which will receive funding for a total amount of 652.655 EUR, 7 of the companies were led by women. To sum up, the entire budget of 3,6 Million Euros, allocated for the applicants of both open calls for application experiments was requested.

The evaluation and selection was completed in due time from mid June to mid July 2022 by 18 Independent Experts (8/10 female-male ratio) and 13 internal technical partners (only one expert was female) from the DIGITbrain consortium. All participants were informed about the evaluation results for their experiment proposal for financial support.

Call information

Complying with EC standards, DIGITbrain 2nd Open Call has been published via the corresponding distribution channels, including:

- DIGITbrain project Portal, link <u>here</u>.
- H2020 Participant Portal, link here.
- EFRA portal, link <u>here</u>.
- I4MS framework, link <u>here</u>.
- FundingBox Portal, link <u>here</u>.
- EGI portal, link <u>here</u>.

- The international press (Example links <u>here</u> and <u>here</u>. For more information read Deliverable D8.2, which is available for download <u>here</u>.).
- Industry Associations (Example link <u>here</u>. For more information read Deliverable D8.2, which is available for download <u>here</u>.).

Besides, DIGITbrain's 2nd Open Call has been promoted by other organizations close to the project, like:

- <u>Innovation Place Portal</u>: This portal is being the internal communication platform for DIGITbrain partners, amongst other European projects, link <u>here</u>.
- <u>FundingBox</u> dissemination channels: FundingBox as the SW platform provider in DIGITbrain open call, will help to promote and disseminate the open calls through their newsletter, their Community Platform and their Social Media, in the upcoming weeks, link <u>here</u> and <u>here</u>.
- <u>CloudiFacturing portal</u>: DIGITbrain is being built on the results of CloudiFacturing, that's why this portal is promoting also DIGITbrain, link <u>here</u> and <u>here</u>.
- <u>cloudSME</u> website: As the partner leading the DIGITbrain strategy dissemination, has been promoting also the open calls, link <u>here</u>.

Furthermore, CloudSME as partner leading the dissemination and promotion is carrying out the <u>dissemination plan</u> to promote this first open call including:

- A strong social media strategy through Social Media Accounts on <u>Twitter</u>, <u>Facebook</u> and <u>LinkedIn</u>.
- Press release, launched in January and March 2022 in three different languages (English, German, Spanish and Italian), link <u>here</u>.
- Another promotional video for the 2nd Open Call, link <u>here</u>.
- A Call Announcement document published in DIGITbrain website three months before the launch of the 2nd Open Call, link <u>here</u>.

In addition to all these promotional activities, DIGITbrain partners involved in open calls organization and execution have scheduled specific dissemination activities:

- Two specific webinars for applicants (QA and Support). First of them on 10th March 2022, the second one on 29th April 2022. Further information <u>here</u> and <u>here</u>.
- Frequently Asked Questions (FAQ) area included in the DIGITbrain website and the Open Call portal, link <u>here</u> and <u>here</u>.
- Other online events (proposal development trainings for applying parties), with a regional coverage were carried out and led by DIHs. Link, <u>here</u>.

Finally, all DIGITbrain partners are broadly promoting the open calls through their own channels, like social media, newsletters, LinkedIn groups and other online channels.

Response to the call-in detail

	Number of proposals	Funding requested
DIGITbrain - Public evaluation report	of the second Open Call	Page 6 of 10

Proposals received	37	3.418.218,01€
Eligible proposals	35	3.167.968,01€
Proposals above threshold	2	250.250 €
Selected proposals	7	652.655€

Table 3: Number of proposals and funding requested

List of beneficiaries

Proposal	Organisation	Country	Type of	Funding awarded
acronym			organisation	
BeerPredictor	Karlwood Ltd.	Hungary	SME	<u>26.250,00 €</u>
BeerPredictor	EN-CO Software Private Co	Hungary		<u>39.950,00 €</u>
	Limited		SME	
BeerPredictor	Deodat 21 Private Partnership	Hungary	SME	<u>31.500,00 €</u>
	Mayteks Orme Sanayi ve	Turkey		26.250,00 €
TEXAMAC	Ticaret Anonim Sirketi		MID - CAP	
	Eliar Elektronik Sanayii Anonim	Turkey		42.000,00€
TEXAMAC	Sirketi		SME	
APRICOT	Bauwerk Group Hrvatska d.o.o.	Croatia	MID - CAP	<u>37.187,00 €</u>
APRICOT	Ascalia d.o.o.	Croatia	SME	<u>59.500,00 €</u>
INSOTWIN	Arneplant SL	Spain	MID - CAP	<u>58.680,00 €</u>
INSOTWIN	DigitalTwin Technology GmbH	Germany	SME	<u>39.120,00 €</u>
DTPQS4IG	CMS Makine Sanayi Ve Ticaret	Turkey		<u>48.041,00 €</u>
	Anonim Şirketi		SME	
DTPQS4IG	Simtera Bilişim İletişim	Turkey		<u>49.087,00 €</u>
	Teknolojileri Limited Şirketi		SME	
INTEGRABLE	Consorzio Intellimech	Italy		<u>52.500,00 €</u>
			SME	
INTEGRABLE	S.C.A.MM. S.R.L.	Italy		44.800,00 €
			SME	
DTCFAM	Compoxi S.L	Spain	SME	48.895,00 €
DTCFAM	Addcomposites Oy	Finland	SME	48.895,00 €

Table 4: Funding awarded per beneficiary

List of selected proposals

Proposal	Proposal Title	Abstract	Funding awarded
Acronym			
	A predictive tool	While the adoption of "smart"	97.700,00
DeerDredicter	for breweries to	brewing technologies has given	
BeerPredictor	optimize the beer	a significant boost to the	
	mashing process	production effectiveness of the	

		brewing industry, certain critical issues - most importantly, the complexities of the mashing process - still miss game-changing technological solutions. To date, the optimal mashing process – which sets some of the very essence of the style of the beer – has been determined by breweries manually, through producing trial brews and series of sampling, resulting in inefficiencies, greater costs, and incremental revenue loss. Our objective is to tackle this challenge by developing a digital simulation (our product, BeerPredictor), which supports setting and defining the correct mashing parameters, allowing small independent brewers to meet the specified carbohydrate composition of a particular beer style without intensive and costly manual tests – trial-and-error	
		approaches - and analytical follow-up, based on the malt batch analytical parameters.	
TEXAMAC	Anomaly Detection, Modelling and Adaptive Control of Textile Dyeing Temperature Control Phases	Textile dyeing is the one of the main processes in textile sector. Textile dyeing process is a batch process and each factory has around 40 dyeing machines. The temperature control of the dye liquid in textile dyeing machine is a phase of textile dyeing process which takes about 70% of dyeing duration. Correct and optimal temperature control is inevitable for quality of desired colour and decreasing colour repairs which results in savings in steam, energy, water,	68.250,00

		chemical and dye usage. Our	
		aim optimising temperature	
		control of the machines by	
		means of finding anomalies,	
		creating digital twin of the	
		temperature control phase and	
		implementing adaptive control	
		algorithms based on PI control.	
		APRICOT is an AI-enabled	96.687,00
		system for quality control of	
		glue application in parquet	
		flooring manufacturing at	
		Bauwerk Group, leading	
		parquet manufacturer in	
APRICOT	Al Parquet Quality	Europe from Switzerland. The	
	Control	experiment uses machine	
		learning with Edge computing	
		and NIR cameras to eliminate	
		quality issues on an automated	
		wood flooring production line	
		in real-time.	
		INSOTWIN will create a digital	97.800,00
		twin of the process of thermo-	57.000,00
		moulding within the	
		manufacturing of shoe insoles	
		in the factory of Arneplant, the	
	Digital twin	EU leader in shoe insole	
	•		
	simulation of the shoe insole manufacturing process	manufacturing. The project will	
INSOTWIN		be based on the existing	
		solution of Digitaltwin	
		Solutions. The Digital Twin	
		solution will be based in the	
		data, model and algorithm	
		tuple proposed by DigitBrain	
		with the aim to use the Digital	
		Agora in their exploitation.	07 120 02
		DTPQS4IG project aims to	97.128,00
		create a Predictive Quality tool	
DTPQS4IG		with Digital Twin functions for	
		Insulated Glass Machines.	
	Digital Twin and	Insulated glasses are vital for	
	Predictive Quality	sustainable building by	
	Solution for	reducing emissions. The	
	Insulated Glass	emission reduction	
	Machine	performance of the products is	
		directly related to the gas filled	
		in the insulated glasses. With	

INTEGRABLE	monitoring and coNTrol for rEconfiGuRABLe prEsses	that project, we make 100 % quality control of gas filling process by analyzing the IoT data collected over machine controller and show the results to manufacturing operation over a digital twin. The experiment seeks to develop an experimental Data Driven Digital Twin which will permit i) edge in process control through a process stabilization monitoring and control system and ii) post process Quality Assessment combined with a continuous learning tool that will extract Geometry based Knowledge rules from multi machine XYZ	97.300,00
		Datasets allocated in the Digit Brain Platform; to "a priori" find improved Printing parameters and feed forward control strategies.	
DTCFAM	Digital Twin For Continuous Fiber Additive Manufacturing	A digital twin for the AFP process will be developed by advancing offline programming software. The solution will capture, and process data to identify defects in real-time alerting the operator to take the corrective action.	97.790,00

Table 5: list of selected proposals