

DIGITbrain- Public evaluation report of the first Open Call

By WP8 - Communication and Outreach

Partner:	CSME
Authors:	Andrea Hanninger (CSME), Rocio
	de la Rosa Gilabert (CTA)
Version:	V.1
Date:	07.10.2021
Due Date:	M16
Dissemination Level:	PU

Project funded by the Horizon 2020 Framework Programme of the European Union, Grant agreement N°: 952071

Document history and quality check

Document History

Version	Date (DD/MM/YYYY)	Created/Amended by	Changes
01	13/10/2021	CSME	First draft of the deliverable
02	25/10/2021	CSME	Final revised version after quality check
02	25/10/2021	CSME	Final revised version after quality check

Table 1: Document history

Quality check review

Reviewer (s)	Main changes
Rocío de la Rosa , Business Development Consultant at Technological Corporation of Andalusia (CTA)	Template format check, providing suggestions about some contents of the document

Table 2: Quality check review

Table of Contents

Document history and quality check	2
List of Tables	4
Executive summary	4
Statement for open documents & Copyrights	4
Evaluation Report	5
Call information	5
Response to the call in detail	6
List of beneficiaries	6
List of selected proposals	7

List of Tables

Table 1: Document history	2
Table 2: Quality check review	2
Table 3: Number of proposals and funding requested	6
Table 4: Funding awarded per beneficiary	7
Table 5: list of selected proposals	9

Executive summary

Shortly after the evaluation of submitted proposals in the Open Call a public summary report of the evaluation results should be published on the DIGITbrain project's website within 30 days of the end of evaluation after the feedback process given to the participants.

This report comprise an account of the call, its evaluation and its results, including dates of call, how it was published, dates of evaluation, number of proposals received, number of proposals funded, as well as a list of all selected proposers and their funding amounts.

Statement for open documents & Copyrights

This document is property of the DIGITbrain Consortium. The content of all or parts of these documents can be used and distributed provided that the DIGITbrain project and the document are properly referenced.

cloudSME and the DIGITbrain consortium are keen on ensuring that all information in this document is correct and fairly stated but does not accept liability for any errors or omissions. At the best of our knowledge, all third-party literary (articles/studies/reports/etc. or excerpts thereof) or artistic (photos/graphs/drawings/etc.) used to support this document are correctly cited and acknowledged. If the reader should find something not compliant, an additional courtesy acknowledgement or correction can be made to this version thereof.

Evaluation Report

Results of open call (call ID ref DIGITbrain - OC1) for recipients of financial support.

Project acronym: DIGITbrain

Project grant agreement number: 952071

Project full name: Digital twins bringing agility and innovation to manufacturing SMEs, by empowering a network of DIHs with an integrated digital platform that enables manufacturing as a Service (MaaS)

Project DIGITbrain, co-funded from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952071, launched an open call (call ID ref DIGITbrain - OC1) for recipients of financial support.

The call was opened on 31th March 2021, 10:00h (CEST Time) and closed on 30th June 2021, 17:00h (CEST Time).

<u>Total EC funding available for third parties in DIGITbrain-OC1</u>: up to 700.000 EUR financial support for Third Parties.

Maximum amount of financial support for each Third Party: 60,000 EUR

A total of 27 proposals were received for this call. 7 experiment proposals will receive funding for a total amount of 693.370,85 EUR.

The evaluation and selection was completed in due time from 15th July to 15th August, 2021 by 15 Independent Experts and internal technical partners from the DIGITbrain consortium. All participants were informed about the evaluation results for their experiment proposal for financial support.

Call information

Complying with EC standards, DIGITbrain 1st Open Call has been published via the corresponding distribution channels, including:

- DIGITbrain project Portal, link <u>here</u>.
- H2020 Participant Portal, link here.
- EFRA portal, link <u>here</u>.
- I4MS framework, link here.
- EGI portal, link <u>here</u>.

Besides, DIGITbrain 1st Open Call has been promoted by others organizations close to the project, like:

- <u>Innovation Place Portal</u>: This portal is being the internal communication platform for DIGITbrain partners, amongst other European projects, link <u>here</u>.
- <u>Funding Box</u> dissemination channels: Funding Box as the SW platform provider in DIGITbrain open call, will help to promote and disseminate the open calls through their newsletter, their Community Platform and their Social Media, in the upcoming weeks, link <u>here</u>.
- <u>CloudiFacturing portal</u>: DIGITbrain is being built over the results of CloudiFacturing, that's why this portal is promoting also DIGITbrain, link <u>here</u>.
- <u>CloudSME</u> website: As the partner leading the DIGITbrain strategy dissemination, has been promoting also the open calls, link <u>here</u>.

Furthermore, CloudSME as partner leading the dissemination and promotion is carrying out a dissemination plan to promote this first open call including:

- A strong social media strategy through Twitter account: @digitbrain_EU,
- Press release, launched in February 2021 in three different languages (English, German and Spanish), link <u>here</u>.
- An Open Call promotional video on YouTube, link here.
- A Call Announcement document published in DIGITbrain website three months before the launch of the 1st Open Call, link <u>here</u>.

In addition to all these promotional activities, DIGITbrain partners involved in open calls organization and execution have scheduled specific dissemination activities:

- Two specific webinars for applicants (QA and Support). First of them planned by 20th April. Further information <u>here</u>.
- Frequently Asked Questions (FAQ) area included in the Open Call portal, link <u>here</u>.
- Other online events, with a regional coverage will be carry out lead by DIHs.

Finally, all DIGITbrain partners are broadly promoting the open calls through their own channels, like social media, newsletters, LinkedIn groups and other online channels.

	Number of proposals	Funding requested
Proposals received	27	2.660.748,00€
Eligible proposals	27	2.660.748,00€
Proposals above threshold	20	1.979.182,92 €
Selected proposals	7	693.370,85€

Response to the call-in detail

Table 3: Number of proposals and funding requested

List of beneficiaries

Proposal acronym	Organisation	Country	Type of	Funding awarded
			organisation	

DIGITbrain - Public evaluation report of the first Open Call

DRIVEN	SEGURIDAD INDUSTRIAL S.A.	Spain	SME	<u>40.000,00 €</u>
	LIS SOLUTIONS.LOGISTIC	Spain		<u>60.000,00 €</u>
	INTELLIGENCE AND DATA			
DRIVEN	ANALISYS, SL		SME	
	REPLASA ADVANCED MATERIALS,	Spain		<u>39.970,00 €</u>
COATWIN	S.A.		MID - CAP	
	TEKNOPAR INDUSTRIAL	Turkey		<u>59.990,00 €</u>
COATWIN	AUTOMATION		SME	
ProMED	PREMET Kft.	Hungary	SME	<u>33.333,00 €</u>
	Consiglio Nazionale delle Ricerche	Italy	Research	<u>33.333,00 €</u>
ProMED			Organization	
ProMED	Opendot srl	Italy	SME	<u>33.333,00 €</u>
DITAC	Restart	Italy	SME	<u>24.281,25 €</u>
	IDM-Systems Ipari Szolgáltató	Hungary		<u>55.195,00 €</u>
	Zártkörűen Működő			
DITAC	Részvénytársaság		SME	
	Consiglio Nazionale delle Ricerche	Italy	Research	<u>20.000,00 €</u>
DITAC			Organization	
	BARCELONA THREE DIMENSIONAL	Spain		<u>46.112,50 €</u>
3D_BRAIN	PRINTERS SL		SME	
	SAVVY DATA SYSTEMS S.L.	Spain		<u>18.445,00 €</u>
3D_BRAIN			SME	
	IDEKO S. COOP.	Spain		<u>29.837,50 €</u>
3D_BRAIN			SME	
DIGITBREAK	COSBERG S.P.A	Italy	SME	<u>27.562,50 €</u>
DIGITBREAK	EnginSoft SpA	Italy	SME	31.587,50€
DIGITBREAK	MADE s.c.a r.l.	Italy	DIH	40.500,00€
DT4DRYER	PRODESA MEDIOAMBIENTE S.L.	Spain	SME	29.141,00€
DT4DRYER	Electroingeniería Industrial XCLC	Spain	SME	37.758,00 €
DT4DRYER	Memorandum Multimedia	Spain	SME	10.491,60 €
	University of Zaragoza	Spain	Research	22.500,00 €
DT4DRYER			Organization	

Table 4: Funding awarded per beneficiary

List of selected proposals

Proposal	Proposal Title	Abstract
Acronym		
DITAC	Dlgital Twin for Agile Changes	The DITAC project will focus on the investigation and implementation of methodologies to introduce Digital Twin based solutions to the design process at Restart Srl, an SME specialized in supply (from design to material realization) of tailor-made industrial automation solutions to provide important support in case of after-sales changes. In the Restart case, after-sales requests for changes from the final user are not isolated and they request significant work on the machine, causing interruption of work/production. The DITAC project aims to reduce the efforts needed for an after-sale change, providing virtual support/simulation for the required design changes.

COATWIN	OPTIMISATION OF THE ENERGY CONSUMPTION AND OPERATION OF A COIL COATING INDUSTRIAL LINE	The project aims at achieving an optimisation of the energy consumption in a coil coating line. Taking advantage of the benefits of using digital twins for the manufacturing industry, the experiment will replicate digitally the existing production process in order to explore different use cases, based on the selection of different parameters, with the main objective of finding the most optimal working point.
DT4DRYER	Digital Twin for Rotary Dryers	A rotary dryer reduces the humidity in particulate matter through direct contact with combustion gases from fossil or renewable fuels (biomass). The design and operation of a rotary dryer present significant challenges, mainly because it must be flexible enough to adapt to a multitude of operating modes. Under this context, we want to prove the benefits for the manufacturer of the industrial product of the development of a digital twin for the rotary dryer. The digital twin will support the design, production and operation phases of the rotary dryer. It will contribute to the faster and more reliable design, better integration of the equipment in the customers' general process and provide an optimal configuration of the process.
ProMED	PRODUCTION OPTIMIZATION FOR ADDITIVE MANUFACTURING OF MEDICAL DEVICES	The main objective of ProMED is to optimize the production of customized metal medical devices through the combined use of additive and subtractive manufacturing. This hybrid technique, often referred to as Sint & Mill (S&M), consists in creating a semi-finished product with a 3D printer and to subsequently apply precision CNC milling for surface finishing. The experiment aims at finding whether the end user PREMET can (1) reduce the production costs and/or (2) improve the product quality, both by choosing the right fabrication parameters. A digital twin of PREMET's production pipeline will be developed and used to quickly simulate a large number of fabrication processes. The rich set of "virtual" data produced by the simulation will be used to train an intelligent module that will be eventually able to support PREMET in its decisions for real productions.
DRIVEN	DIGITAL BRAIN FOR PREDICTIVE MAINTENANCE IN AUTOMOTIVE SECTOR	Machine efficiency losses are one of the main and most common concerns in industrial processes. With that in mind, DRIVEN proposes to analyze, simulate and optimize the entire operation of product movements between the parts warehouse, the packaging process in an automotive component factory. Even models, analytics and optimizations exist, DRIVEN will develop and use two new technologies. Digital Twin for machine performance analysis, based on artificial vision and image recognition and Risk of Failure Forecasting, monitoring the machine performance in real time through the digital twin using Convolutional Neural Network. To that, DRIVEN will make intensive use of the DIGITbrain platform, from the edge layer to the user interfaces in a web-based environment. The experiment will optimize production processes by achieving a significant increase in the OEE, and also fostering the democratisation of technologies, opening the way to new business models based on data exploitation.
3D_BRAIN	Smart Digital Twin based 3D Printing	The experiment seeks to develop an experimental Data Driven Digital Twin which will permit i) edge in process control through a process
	Process Reliability	stabilization monitoring and control system and ii) post process

DIGITbrain - Public evaluation report of the first Open Call

	Assurance Add-on	Quality Assessment combined with a continuous learning tool that will
	enhanced with	extract Geometry based Knowledge rules from multi machine XYZ
	Cloud based	Datasets allocated in the Digit Brain Platform; to "a priori" find
	iterative learning	improved Printing parameters and feed forward control strategies.
		Producer of manufacturing assembly lines faces unprecedented
		challenges in optimizing design and engineering to meet evolving
		market needs while ensuring, efficiency and productivity challenges.
	Digital Twin to	DigiTBrake will solve this challenge developing a Simulated Base Digital
	optimize design of	Twin of a pilot line assembling small calipers and pistons for
DIGITBREAK	cars braking	automotive braking system to be integrated into DIGITBrain. The
	system assembly	experiment follow Test Before Invest (TBI) methodology deploying use
	line	case installed at Digital Innovation Hub. It will ensure widening of
		DIGITBrain EU network. End User, IVS and DIH will benefit from
		integration of Data, Model and Algorithm of pilot line DT into the
		DIGITBrain consolidating its international commercial presence.

Table 5: list of selected proposals